SHORT COMMUNICATION

Acinetobacter - An Emerging Meningitis causing Pathogen in North India

Vandana Berry, Madan Lal, Ashima Chander
Department of Microbiology, Christian Medical College, Ludhiana

ABSTRACT

Background: Acinetobacter is a key source of infection in debilitated patients in the hospital. They act as opportunistic pathogens causing respiratory tract infections like pneumonia, bronchitis etc. Sometimes they may be encountered in serious infections including meningitis, septicemia and endocarditis. There is a paucity of data on contribution of Acinetobacter in causation of meningitis.

Material and Methods: Present study was conducted over a period of four years w.e.f. January 2005 to December 2008, a total of 3177 CSF samples were tested from patients suspected of having meningitis. Out of 73 positive samples, Acinetobacter had a prevalence of 26.03% (19/73). Imipenem and gatifloxacin showed 100% sensitivity whereas ampicillin, cotrimoxazole, ciprofloxacin and cephaloridine gave very poor response. Increasing prevalence of Acinetobacter meningitis, inclining antibiotic resistance and emergence of multidrug resistant strains call for immediate line of action.

Conclusion: Hence, periodic preparation of antibiograms for the selection of appropriate antimicrobial drug combined with effective infection control measures in the hospital, especially in the ICUs, are very important to save the precious lives. (J Med Sci 2009; 12(1):24-26)

Keywords: Acinetobacter, Meningitis, Imipenem, Gatiflox.

Observations

Acinetobacter species are generally considered non-pathogenic to healthy individuals. These are found with carriage rates of 42.5% in healthy individuals and as high as 75% in hospitalized patients. They act as opportunistic pathogens causing respiratory tract infections like pneumonia, bronchitis etc. Sometimes they may be encountered in serious infections including meningitis, septicemia and endocarditis. Acinetobacter is a key source of infection in debilitated patients in the hospital. Due to the paucity of data in this part of the country, a study was planned to know the prevalence of this threatening microorganism in meningitis.

Materials and Methods

Three thousand one hundred and 77 CSF samples received from patients suspected of having meningitis, were cultured in the department of Microbiology, for a period of 4 years from January 2005 to December, 2008.

Each CSF sample was divided into two parts. One part was used for cytology and second part was centrifuged. The deposit obtained was cultured on blood agar, blood agar with Staphylococcus aureus streak, chocolate agar, and MacCOpnkey agar plates. Blood agar with Staphylococcus aureus streak and chocolate agar plates

Reprint Request:
Dr. Vandana Berry
Department of Microbiology
Christian Medical College,
Amritsar-141 008, Punjab.
were incubated under capnophilic condition in a candle jar. Incubation was done for 24 hours at 37°C, and it was extended for another 24 hours if no growth appeared on day one. Bacterial growth was identified based on the colony characteristics, Gram stain and biochemical tests.6

The colonies of Acinetobacter were whitish or cream coloured, smooth, circular and glistening. The antibiotic susceptibility was done by Kirby-Bauer disc diffusion method.6

Results

Acinetobacter was isolated from 19(26.03%) out of the 73 culture positive specimens of CSF. Results are indicated in Table 1. Out of the positive cases, 2 were children aged 2 and 5 years, there were 10 females and 9 males.

Table 1: Year-wise analysis of acinetobacter isolations from CSF

<table>
<thead>
<tr>
<th>Year</th>
<th>Total samples</th>
<th>No. of positive samples</th>
<th>No. of Acinetobacter</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>958</td>
<td>11</td>
<td>01</td>
<td>09.09</td>
</tr>
<tr>
<td>2006</td>
<td>465</td>
<td>15</td>
<td>02</td>
<td>13.33</td>
</tr>
<tr>
<td>2007</td>
<td>821</td>
<td>26</td>
<td>11</td>
<td>42.31</td>
</tr>
<tr>
<td>2008</td>
<td>935</td>
<td>21</td>
<td>05</td>
<td>24.81</td>
</tr>
<tr>
<td>Total</td>
<td>3177</td>
<td>73</td>
<td>19</td>
<td>26.03</td>
</tr>
</tbody>
</table>

Other pathogens isolated from the positive samples included Pneumococcus, Pseudomonas, Neisseria, Escherichia coli, Haemophilus influenzae, Staphylococcus aureus and Klebsiella pneumoniae in declining order of frequency (Table 2). Cytology showed white cells between the ranges of 440-25000/cu.mm in these nineteen cases. The isolates were found to be 100% sensitive to imipenem, gatifloxacin and piperacillin tazobactam combination. These were found to be 100% resistant to ampicillin, cefacloridine cefuroxime, cefazidime ciprofloxacin and amoxicillin/clavulanic acid combination. Cefoperazone sulbactum combination revealed the sensitivity to be 89.47%. Results are shown in Table 2.

Discussion

Acinetobacter is a common commensal of skin and also a saprophyte. Sometimes it causes disease like urinary tract infection, hypotension, hemorrhagic adrenals and Frederickson syndrome. It is often associated with hospital infections particularly iatrogenic meningitis. The disease has been reported from time to time, although with a low incidence. Earlier studies conducted in the same region reported 5.6% and 9.2% of meningitis caused by Acinetobacter.6,5 By comparing the results of these two studies conducted in the same region, we can conclude that there is almost three to five fold increase in the prevalence of Acinetobacter meningitis.

Acinetobacter species are innately resistant to many classes of antibiotics. Earlier studies in the region found high degree of resistance to commonly used drugs.5,6 Present study also showed marked resistance to ampicillin, cotrimoxazole, tetracycline, ciprofloxacin, cephaprodine, aminoglycosides and amoxicillin/clavulanic acid combination. Multi drug resistance in this organism is also reported increasing frequently.5 Resistance to fluoroquinolones has been reported during therapy and this has also resulted in increased resistance to other drug classes mediated through active drug efflux. A dramatic increase in antibiotic resistance in Acinetobacter strains has been reported by the CDC and the carbapenems are recognized as the gold-standard and treatment of last resort.6 Imipenem/meropenem remains the drug of choice of treating Acinetobacter infections. In our study also, we found imipenem to be 100% sensitive. Acinetobacter species are developing resistant to many classes of antibiotics.

The aim of the study is to create general awareness regarding increasing pathogenic behavior of Acinetobacter that was earlier labeled as commensal. Secondly, it should not be confused with N meningitis which
resembles it morphologically. Clinically, the disease produced remains indistinguishable from that produced by other pathogens. It exhibits a wide and varied spectrum of antibiotic sensitivity. Variety of potential sources of contamination and infection in the hospital environment promote the spread of resistant Acinetobacter in nosocomial infections. Hence periodic preparation of antibiograms for the selection of appropriate antimicrobial drug combined with effective infection control measures in the hospital, especially in the ICU's are very important to save precious lives.

References